
ModelPlex: Verified Runtime Validation
of Verified Cyber-Physical System Models

Stefan Mitsch André Platzer
July 2014

CMU-CS-14-121

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A conference version of this report has appeared at RV 2014 [22].
Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified cyber-
physical system models. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime Ver-
ification - 5th International Conference, RV 2014, Toronto, Canada, September 22-25, 2014.
Proceedings, volume 8734 of LNCS, pages 199-214. Springer, 2014.

This material is based on research sponsored by DARPA under agreement number DARPA FA8750-12-2-0291. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
ModelPlex: Verified Runtime Validation of Verified Cyber-Physical
System Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Formal verification and validation play a crucial role in making cyber-physical systems (CPS) safe. Formal
methods make strong guarantees about the system behavior if accurate models of the system can be
obtained, including models of the controller and of the physical dynamics. In CPS models are essential; but
any model we could possibly build necessarily deviates from the real world. If the real system fits to the
model, its behavior is guaranteed to satisfy the correctness properties verified w.r.t. the model. Otherwise,
all bets are off. This paper introduces ModelPlex, a method ensuring that verification results about models
apply to CPS implementations. ModelPlex provides correctness guarantees for CPS executions at runtime:
it combines offline verification of CPS models with runtime validation of system executions for compliance
with the model. Model- Plex ensures that the verification results obtained for the model apply to the actual
system runs by monitoring the behavior of the world for compliance with the model, assuming the system
dynamics deviation is bounded. If, at some point, the observed behavior no longer complies with the model
so that offline verification results no longer apply, ModelPlex initiates provably safe fallback actions. This
paper, furthermore, develops a systematic technique to synthesize provably correct monitors automatically
from CPS proofs in differential dynamic logic.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: runtime verification, cyber-physical systems, hybrid systems, logic

Abstract

Formal verification and validation play a crucial role in making cyber-physical systems (CPS) safe.
Formal methods make strong guarantees about the system behavior if accurate models of the sys-
tem can be obtained, including models of the controller and of the physical dynamics. In CPS,
models are essential; but any model we could possibly build necessarily deviates from the real
world. If the real system fits to the model, its behavior is guaranteed to satisfy the correctness
properties verified w.r.t. the model. Otherwise, all bets are off. This paper introduces ModelPlex, a
method ensuring that verification results about models apply to CPS implementations. ModelPlex
provides correctness guarantees for CPS executions at runtime: it combines offline verification of
CPS models with runtime validation of system executions for compliance with the model. Model-
Plex ensures that the verification results obtained for the model apply to the actual system runs
by monitoring the behavior of the world for compliance with the model, assuming the system dy-
namics deviation is bounded. If, at some point, the observed behavior no longer complies with the
model so that offline verification results no longer apply, ModelPlex initiates provably safe fallback
actions. This paper, furthermore, develops a systematic technique to synthesize provably correct
monitors automatically from CPS proofs in differential dynamic logic.

1 Introduction
Cyber-physical systems (CPS) span controllers and the relevant dynamics of the environment.
Since safety is crucial for CPS, their models (e. g., hybrid system models [29]) need to be verified
formally. Formal verification guarantees that a model is safe w.r.t. a safety property. The remaining
task is to validate whether those models are adequate, so that the verification results transfer to
the system implementation [16, 38]. This paper introduces ModelPlex, a method to synthesize
monitors by theorem proving: it uses sound proof rules to formally verify that a model is safe and
to synthesize provably correct monitors that validate compliance of system executions with that
model.

System execution, however, provides many opportunities for surprising deviations from the
model: faults may cause the system to function improperly [39], sensors may deliver uncertain
values, actuators suffer from disturbance, or the formal verification may have assumed simpler
ideal-world dynamics for tractability reasons or made unrealistically strong assumptions about the
behavior of other agents in the environment. Simpler models are often better for real-time deci-
sions and optimizations, because they make predictions feasible to compute at the required rate.
The same phenomenon of simplicity for predictability is often exploited for the models in formal
verification and validation. As a consequence, the verification results obtained about models of a
CPS only apply to the actual CPS at runtime to the extent that the system fits to the model.

Validation, i. e., checking whether a CPS implementation fits to a model, is an interesting but
difficult problem. Even more so, since CPS models are more difficult to analyze than ordinary
(discrete) programs because of the physical plant, the environment, sensor inaccuracies, and actu-
ator disturbance. In CPS, models are essential; but any model we could possibly build necessarily
deviates from the real world. Still, good models are approximately right, i. e., within certain error
margins.

In this paper, we settle for the question of runtime model validation, i. e. validating whether the
model assumed for verification purposes is adequate for a particular system execution to ensure
that the verification results apply to the current execution.1 But we focus on verifiably correct
runtime validation to ensure that verified properties of models provably apply, which is important
for safety and certification [5].

If the observed system execution fits to the verified model, then this execution is safe according
to the offline verification result about the model. If it does not fit, then the system is potentially
unsafe because it no longer has an applicable safety proof, so we initiate a verified fail-safe action to
avoid safety risks. Checking whether a system execution fits to a verified model includes checking
that the actions chosen by the (unverified) controller implementation fit to one of the choices and
requirements of the verified controller model. It also includes checking that the observed states
can be explained by the plant model. The crucial questions are: How can a compliance monitor be
synthesized that provably represents the verified model? How much safety margin does a system
need to ensure that fail-safe actions are initiated early enough for the system to remain safe even if

1 ModelPlex checks system execution w.r.t. a monitor specification, and thus, belongs to the field of runtime verifica-
tion [16]. In this paper we use the term runtime validation in order to clearly convey the purpose of monitoring (i. e.,
runtime verification: monitor properties without offline verification; ModelPlex: monitor model adequacy to transfer
offline verification results).

1

its behavior ceases to comply with the model?
The second question is related to feedback control and can only be answered when assuming

constraints on the deviation of the real system dynamics from the plant model [33]. Otherwise, i. e.,
if the real system can be infinitely far off from the model, safety guarantees are impossible. By
the sampling theorem in signal processing [37], such constraints further enable compliance mon-
itoring solely on the basis of sample points instead of the unobservable intermediate states about
which no sensor data exists.2 This paper presents ModelPlex, a method to synthesize verifiably
correct runtime validation monitors automatically. ModelPlex uses theorem proving with sound
proof rules [29] to turn hybrid system models into monitors in a verifiably correct way. Upon
noncompliance, ModelPlex initiates provably safe fail-safe actions. System-level challenges w.r.t.
monitor implementation and violation cause diagnosis are discussed elsewhere [8, 19, 41].

2 Preliminaries: Differential Dynamic Logic
For hybrid systems verification we use differential dynamic logic dL [27, 29, 31], which has a
notation for hybrid systems as hybrid programs. dL allows us to make statements that we want
to be true for all runs of a hybrid program ([α]φ) or for at least one run (〈α〉φ). Both constructs
are necessary to derive safe monitors: we need [α]φ proofs so that we can be sure all behavior of
a model (including controllers) are safe; we need 〈α〉φ proofs to find monitor specifications that
detect whether or not system execution fits to the verified model. Table 1 summarizes the relevant
syntax fragment of hybrid programs together with an informal semantics. The semantics ρ(α) of
hybrid program α is a relation on initial and final states of running α (defined in [27, 30]). The
set of dL formulas is generated by the following grammar (∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are
arithmetic expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ
2 When such constraints are not available, our method still generates verifiably correct runtime tests, which detect
deviation from the model at the sampling points, just not between them. A fail-safe action will then lead to best-effort
mitigation of safety risks (rather than guaranteed safety).

Table 1: Hybrid program representations of hybrid systems.

Statement Effect

α; β sequential composition, first run hybrid program α, then hybrid program β
α ∪ β nondeterministic choice, following either hybrid program α or β
α∗ nondeterministic repetition, repeats hybrid program α n ≥ 0 times
x := θ assign value of term θ to variable x (discrete jump)
x := ∗ assign arbitrary real number to variable x
?F check that a particular condition F holds, and abort if it does not(
x′1 = θ1, . . . , evolve xi along differential equation system x′i = θi
x′n = θn & F

)
restricted to maximum evolution domain F

2

γi

νi−1 νi ν̃i νi+1

...
γi−2

⊆ α

γi−1

?

⊆ α

γctrl

?

⊆ αctrl

γplant

αδplant

γi+1

model
monitor

controller
monitor

prediction
monitor

Figure 1: Use of ModelPlex monitors along a system execution

Differential dynamic logic comes with a verification technique to prove correctness properties
of hybrid programs (cf. [31] for an overview of dL and KeYmaera).

3 ModelPlex Approach for Verified Runtime Validation
CPS are almost impossible to get right without sufficient attention to prior analysis, for instance by
formal verification and formal validation techniques. We assume to be given a verified model of a
CPS, i. e. formula (1) is proved valid,3 for example using [27, 31].

φ→ [α∗]ψ with invariant ϕ→ [α]ϕ s.t. φ→ ϕ and ϕ→ ψ (1)

Formula (1) expresses that all runs of the hybrid system α∗, which start in states that satisfy
the precondition φ and repeat the model α arbitrarily many times, must end in states that satisfy
the postcondition ψ. Formula (1) is proved using some form of induction, which shows that a loop
invariant ϕ holds after every run of α if it was true before. The model α is a hybrid system model
of a CPS, which means that it describes both the discrete control actions of the controllers in the
system and the continuous physics of the plant and the system’s environment.

The safety guarantees that we obtain by proving formula (1) about the model α∗ transfer to the
real system, if the actual CPS execution fits to α∗. Since we want to preserve safety properties, a
CPS γ fits to a model α∗, if the CPS reaches at most those states that are reachable by the model,
i. e., ρ(γ) ⊆ ρ(α∗). However, we do not know γ and therefore need to find a condition based on α∗

that we can check at runtime to see if concrete runs of γ behave like α∗. Checking the postcondition
ψ is not sufficient because, if ψ does not hold, the system is already unsafe. Checking the invariant
ϕ is insufficient as well, because if ϕ does not hold the controller can no longer guarantee safety,
even though the system may not yet be unsafe. But if we detect when a CPS is about to deviate
from α∗ before leaving ϕ, we can still switch to a fail-safe controller to avoid ¬ψ from happening.

ModelPlex derives three kinds of monitors (model monitor, controller monitor, and prediction
monitor, cf. Fig. 1). We check reachability between consecutive states in α, αctrl, and αδplant by
verifying states during execution against the corresponding monitor.

3 We use differential dynamic logic (dL) and KeYmaera as a theorem prover to illustrate our concepts throughout this
paper. The concept of ModelPlex is not predicated on the use of KeYmaera to prove (1). Other verification techniques
could be used to establish validity of this formula. The flexibility of the underlying logic dL, its support for both [α]φ
and 〈α〉φ, and its proof calculus, however, are exploited for systematically constructing monitors from proofs in the
sequel.

3

Model monitor In each state νi we test the sample point νi−1 from the previous execution γi−1

for deviation from the single α, not α∗ i. e., test (νi−1, νi) ∈ ρ(α). If violated, other verified
properties may no longer hold for the system; the system, however, is still safe if a prediction
monitor was satisfied on νi−1. Frequent violations indicate an inadequate model that should
be revised to better reflect reality.

Controller monitor In intermediate state ν̃i we test the current controller decisions of the im-
plementation γctrl for compliance with the model, i. e., test (νi, ν̃i) ∈ ρ(αctrl). Controller
monitors are designed for switching between controllers similar to Simplex [36]. If violated,
the commands from a fail-safe controller replace the current controller’s decisions to ensure
that no unsafe commands are ever actuated.

Prediction monitor In intermediate state ν̃i we test the worst-case safety impact of the current
controller decisions w.r.t. the predictions of a bounded deviation plant model αδplant, which
has a tolerance around the model plant αplant, i. e., check νi+1 |= ϕ for all νi+1 such that
(ν̃i, νi+1) ∈ ρ(αδplant). Note, that we simultaneously check all νi+1 by checking ν̃i for a
characterizing condition of αδplant. If violated, the current control choice is not guaranteed to
keep the system safe until the next control cycle and, thus, a fail-safe controller takes over.

The assumption for the prediction monitor is that the real execution is not arbitrarily far off
the plant models used for safety verification, because otherwise guarantees can be neither made
on unobservable intermediate states nor on safety of the future system evolution [33]. We propose
separation of disturbance causes in the models: ideal plant models αplant for correctness verifica-
tion purposes, implementation deviation plant models αδplant for monitoring purposes. We support
any deviation model (e. g., piecewise constant disturbance, differential inclusion models of distur-
bance), as long as the deviation is bounded and differential invariants can be found. We further
assume that monitor evaluations are at most some ε time units apart (e. g., along with a recurring
controller execution). Note that disturbance in αδplant is more manageable compared to α∗, because
we can focus on single runs α instead of repetitions for monitoring.

3.1 Relation between States
We systematically derive a check that inspects states of the actual CPS to detect deviation from the
model α∗. We first establish a notion of state recall and show that, when all previous state pairs
complied with the model, compliance of the entire execution can be checked by checking the latest
two states (νi−1, νi) (see App. A for proofs).

Definition 1 (State recall). We use V to denote the set of variables whose state we want to recall.
We use Υ−V ≡

∧
x∈V x = x− to express a characterization of the values of variables in a state prior

to a run of α, where we always assume the fresh variables x− to occur solely in Υ−V . The variables
in x− can be used to recall this state. Likewise, we use Υ+

V ≡
∧
x∈V x = x+ to characterize the

posterior states and expect fresh x+.

With this notation the following lemma states that an interconnected sequence of α transitions
forms a transition of α∗.

4

Lemma 1 (Loop prior and posterior state). Let α be a hybrid program and α∗ be the program that
repeats α arbitrarily many times. Assume that all consecutive pairs of states (νi−1, νi) ∈ ρ(α) of
n ∈ N+ executions, whose valuations are recalled with Υi

V ≡
∧
x∈V x = xi and Υi−1

V are plausible
w.r.t. the model α, i. e., |=

∧
1≤i≤n

(
Υi−1
V → 〈α〉Υi

V

)
with Υ−V = Υ0

V and Υ+
V = Υn

V . Then, the
sequence of states originates from an α∗ execution from Υ0

V to Υn
V , i. e., |= Υ−V → 〈α∗〉Υ

+
V .

Lemma 1 enables us to check compliance with the model α∗ up to the current state by checking
reachability of a posterior state from a prior state on each execution of α (i. e., online monitor-
ing [16], which is easier because the loop was eliminated). To find compliance checks systemati-
cally, we construct formula (2), which relates a prior state of a CPS to its posterior state through at
least one path through the model α. 4

Υ−V → 〈α〉Υ
+
V (2)

This formula is satisfied in a state ν, if there is at least one run of the model α starting in
the state ν recalled by Υ−V and results in a state ω recalled using Υ+

V . In other words, at least
one path through α explains how the prior state ν got transformed into the posterior state ω. The
dL formula (2) characterizes the state transition relation of the model α directly. Its violation
witnesses compliance violation. Compliance at all intermediate states cannot be observed by real-
world sensors, see Section 3.5.

In principle, formula (2) would be a monitor, because it relates a prior state to a posterior
state through the model of a CPS; but the formula is hard if not impossible to evaluate at runtime,
because it refers to a hybrid system α, which includes nondeterminism and differential equations.
The basic observation is that any formula that is equivalent to (2) but conceptually easier to evaluate
in a state would be a correct monitor. We use theorem proving for simplifying formula (2) into
quantifier-free first-order real arithmetic form so that it can be evaluated efficiently at runtime. The
resulting first-order real arithmetic formula can be easily implemented in a runtime monitor and
executed along with the actual controller. A monitor is executable code that only returns true if
the transition from the prior system state to the posterior state is compliant with the model. Thus,
deviations from the model can be detected at runtime, so that appropriate fallback and mitigation
strategies can be initiated.

Remark 1. The complexity for evaluating an arithmetic formula over the reals for concrete num-
bers is linear in the formula size, as opposed to deciding the validity of such formulas, which is
doubly exponential. Evaluating the same formula on floating point numbers is inexpensive, but
may yield wrong results due to rounding errors; on exact rationals the bit-complexity can be non-
negligible. We use interval arithmetic to obtain reliable results efficiently (cf. App. C).

Example 1. We will use a simple water tank as a running example to illustrate the concepts
throughout this section. The water tank has a current level x and a maximum level m. The water
tank controller, which runs at least every ε time units, nondeterministically chooses any flow f
between a maximum outflow −1 and a maximum inflow m−x

ε
. This water tank never overflows, as

witnessed by a proof for the following dL formula.

4 Consecutive states for α∗ mean before and after executions of α (i. e., α
↓
;α
↓
;α, not within α).

5

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
φ

→
[(

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
)∗] ψ︷ ︸︸ ︷

(0 ≤ x ≤ m)

3.2 ModelPlex Monitor Synthesis
This section introduces the nature of ModelPlex monitor specifications, our approach to generate
such specifications from hybrid system models, and how to turn those specifications into monitor
code that can be executed at runtime along with the controller.

A ModelPlex specification corresponds to the dL formula (2). If the current state of a sys-
tem does not satisfy a ModelPlex specification, some behavior that is not reflected in the model
occurred (e. g., the wrong control action was taken, unanticipated dynamics in the environment oc-
curred, sensor uncertainty led to unexpected values, or the system was applied outside the specified
operating environment).

A model monitor χm checks that two consecutive states ν and ω can be explained by an execu-
tion of the model α, i. e., (ν, ω) ∈ ρ(α). In the sequel, BV (α) are bound variables in α, FV (ψ)
are free variables in ψ, Σ is the set of all variables, and A\B denotes the set of variables being in
some set A but not in some other set B. Furthermore, we use ν|A to denote ν projected onto the
variables in A.

Theorem 1 (Model monitor correctness). Let α∗ be provably safe, so |= φ → [α∗]ψ. Let Vm =
BV (α) ∪ FV (ψ). Let ν0, ν1, ν2, ν3 . . . ∈ Rn be a sequence of states, with ν0 |= φ and that agree
on Σ\Vm, i. e., ν0|Σ\Vm = νk|Σ\Vm for all k. We define (ν, νi+1) |= χm as χm evaluated in the state
resulting from ν by interpreting x+ as νi+1(x) for all x ∈ Vm, i. e., ννi+1(x)

x+ |= χm. If (νi, νi+1) |= χm

for all i < n then we have νn |= ψ where

χm ≡
(
φ|const → 〈α〉Υ+

Vm

)
(3)

and φ|const denotes the conditions of φ that involve only constants that do not change in α, i. e.,
FV (φ|const) ∩BV (α) = ∅.

Our approach to generate monitor specifications from hybrid system models takes a verified dL
formula (1) as input and produces a monitor χm in quantifier-free first-order form as output. The
algorithm, listed in App. D, involves the following steps:

1. A dL formula (1) about a model α of the form φ → [α∗]ψ is turned into a specification
conjecture (3) of the form φ|const → 〈α〉Υ+

Vm
.

2. Theorem proving on the specification conjecture (3) is applied until no further proof rules
are applicable and only first-order real arithmetic formulas remain open.

3. The monitor specification χm is the conjunction of the unprovable first-order real arithmetic
formulas from open sub-goals.

6

Generate the monitor conjecture. We map dL formula (1) syntactically to a specification con-
jecture of the form (3). By design, this conjecture will not be provable. But the unprovable
branches of a proof attempt will reveal information that, had it been in the premises, would make
(3) provable. Through Υ+

Vm
, those unprovable conditions collect the relations of the posterior state

of model α characterized by x+ to the prior state x, i. e., the conditions are a representation of (2)
in quantifier-free first-order real arithmetic.
Example 2. The specification conjecture for the water tank model is given below. It is constructed
from the model by removing the loop, flipping the modality, and formulating the specification
requirement as a property, since we are interested in a relation between two consecutive states ν
and ω (recalled by x+, f+ and t+). Using theorem proving [34], we analyze the conjecture to
reveal the actual monitor specification.

ε > 0︸ ︷︷ ︸
φ|const

→
〈
f := ∗; ?

(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
〉 Υ+

Vm︷ ︸︸ ︷
(x = x+ ∧ f = f+ ∧ t = t+)

Use theorem proving to analyze the specification conjecture. We use the proof rules of dL [27,
31] to analyze the specification conjecture χm. These proof rules syntactically decompose a hybrid
model into easier-to-handle parts, which leads to sequents with first-order real arithmetic formulas
towards the leaves of a proof. Using real arithmetic quantifier elimination we close sequents with
logical tautologies, which do not need to be checked at runtime since they always evaluate to true
for any input. The conjunction of the remaining open sequents is the monitor specification; it
implies (2).

A complete sequence of proof rules applied to the monitor conjecture of the water tank is
described in App. B. Most steps are simple when analyzing specification conjectures: sequential
composition (〈; 〉), nondeterministic choice (〈∪〉), deterministic assignment (〈:=〉) and logical con-
nectives (∧r etc.) replace current facts with simpler ones or branch the proof (cf. rules in [27, 30]).
Challenges arise from handling nondeterministic assignment and differential equations in hybrid
programs.

Let us first consider nondeterministic assignment x := ∗. The proof rule for nondeterministic
assignment (〈∗〉) results in a new existentially quantified variable. By sequent proof rule ∃r, this
existentially quantified variable is instantiated with an arbitrary term θ, which is often a new logical
variable that is implicitly existentially quantified [27]. Weakening (Wr) removes facts that are no
longer necessary.

(〈∗〉)
∃X〈x :=X〉φ
〈x := ∗〉φ

1 (∃r)
Γ ` φ(θ),∃xφ(x),∆

Γ ` ∃xφ(x),∆
2 (Wr)

Γ ` ∆

Γ ` φ,∆

1 X is a new logical variable
2 θ is an arbitrary term, often a new (existential) logical variable X .

Optimization 1 (Instantiation Trigger). If the variable is not changed in the remaining α, xi = x+
i

is in Υ+
Vm

and X is not bound in Υ+
Vm

, then instantiate the existential quantifier by rule ∃r with the
corresponding x+

i that is part of the specification conjecture (i. e., θ = x+
i), since subsequent proof

steps are going to reveal θ = x+
i anyway.

7

Otherwise, we introduce a new logical variable, which may result in an existential quantifier in
the monitor specification if no further constraints can be found later in the proof.

Example 3. The corresponding steps in the water tank proof use 〈∗〉 for the nondeterministic flow
assignment (f := ∗) and ∃r to instantiate the resulting existential quantifier ∃F with a new logical
variable F (plant is an abbreviation for x′ = f, t′ = 1 & 0 ≤ x ∧ t ≤ ε). We show the proof
without and with application of Opt. 1.

φ ` 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε 〉〈plant〉Υ+

∃r,Wrφ ` ∃F 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε 〉〈plant〉Υ+

〈∗〉 φ ` 〈f := ∗; ?−1 ≤ f ≤ m−x
ε 〉〈plant〉Υ+

φ ` 〈f := f+〉
〈?−1 ≤ f ≤ m−x

ε 〉〈plant〉Υ+

∃r,Wr . . .

with Opt. 1 (anticipate f = f+ from Υ+)

w/o Opt. 1

Next, we handle differential equations. Even when we can solve the differential equation,
existentially and universally quantified variables remain. Let us inspect the corresponding proof
rule from the dL calculus [31].

(〈′〉)
∃T≥0

(
(∀0≤t̃≤T 〈x := y(t̃)〉H) ∧ 〈x := y(T)〉φ

)
〈x′ = θ&H〉φ

1 (QE)
QE(φ)

φ
2

1 T and t̃ are fresh logical variables and 〈x := y(T)〉 is the discrete assignment belonging to the solution y of the
differential equation with constant symbol x as symbolic initial value
2 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is an equivalent quantifier-free formula computable
by [7]

For differential equations we have to prove that there exists a duration t, such that the differ-
ential equation stays within the evolution domain H throughout all intermediate times t̃ and the
result satisfies φ at the end. At this point we have three options:

• we can instantiate the existential quantifier, if we know that the duration will be t+;

• we can introduce a new logical variable, which is the generic case that always yields correct
results, but may discover monitor specifications that are harder to evaluate;

• we can use quantifier elimination (QE) to obtain an equivalent quantifier-free result (a pos-
sible optimization could inspect the size of the resulting formula).

Example 4. In the analysis of the water tank example, we solve the differential equation (see 〈′〉)
and apply the substitutions f := F and t := 0. In the next step (see ∃r,Wr), we instantiate the
existential quantifier ∃T with t+ (i. e., we choose T = t+ using Opt. 1 with the last conjunct) and
use weakening right (Wr) to systematically get rid of the existential quantifier that would otherwise
still be left around by rule ∃r. Finally, we use quantifier elimination (QE) to reveal an equivalent
quantifier-free formula.

The analysis of the specification conjecture finishes with collecting the open sequents from the

proof to create the monitor specification χm
def≡
∧

(open sequent). The collected open sequents may

8

φ ` F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0
QE φ ` ∀0≤t̃≤T (x+ f+t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ = t+

∃r,Wrφ ` ∃T≥0((∀0≤t̃≤T (x+ f+t̃ ≥ 0 ∧ t̃ ≤ ε)) ∧ F = f+ ∧ (x+ = x+ FT ∧ t+ = T))
〈′〉 φ ` 〈f :=F ; t := 0〉〈{x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε}〉Υ+

include new logical variables and new (Skolem) function symbols that were introduced for non-
deterministic assignments and differential equations when handling existential or universal quan-
tifiers. We use the invertible quantifier rule i∃ to re-introduce existential quantifiers for the new
logical variables (universal quantifiers for function symbols, see [27] for calculus details). Often,
the now quantified logical variables are discovered to be equal to one of the post-state variables
later in the proof, because those variables did not change in the model after the assignment. If this
is the case, we can use proof rule ∃σ to further simplify the monitor specification by substituting
the corresponding logical variable x with its equal term θ.

(i∃)
Γ ` ∃X (

∧
i(Φi ` Ψi)) ,∆

Γ,Φ1 ` Ψ1,∆ · · · Γ,Φn ` Ψn,∆
1 (∃σ)

φ(θ)

∃x (x = θ ∧ φ(x))
2

1 Among all open branches, free logical variable X only occurs in the branches Γ,Φi ` Ψi,∆
2 Logical variable x does not appear in term θ

Example 5. The two open sequents of Examples 3 and 4 use a new logical variable F for the
nondeterministic flow assignment f := ∗. After further steps in the proof, the assumptions reveal
additional information F = f+. Thus, we re-introduce the existential quantifier over all the open
branches (i∃) and substitute f+ for F (∃σ). The sole open sequent of this proof attempt is the
monitor specification χm of the water tank model.

φ ` −1 ≤ f+ ≤ m−x
ε ∧ x+ = x+ f+t+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ f+t+ + x ≥ 0

∃σφ ` ∃F (−1 ≤ F ≤ m−x
ε ∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0)

i∃φ ` −1 ≤ F ≤ m−x
ε φ ` F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0

3.3 Controller Monitor Synthesis
A controller monitor χc checks that two consecutive states ν and ω are reachable with one con-
troller execution αctrl, i. e., (ν, ω) ∈ ρ(αctrl) with Vc = BV (αctrl) ∪ FV (ψ). We systematically
derive controller monitors from formulas φ|const → 〈αctrl〉Υ+

Vc
. A controller monitor can be used to

initiate controller switching similar to Simplex [36].

Theorem 2 (Controller monitor correctness). Let α of the canonical form αctrl;αplant. Assume
|= φ → [α∗]ψ has been proven with invariant ϕ as in (1). Let ν |= φ|const ∧ ϕ, as checked by χm

(Theorem 1). Furthermore, let ν̃ be a post-controller state. If (ν, ν̃) |= χc with χc ≡ φ|const →
〈αctrl〉Υ+

Vc
then we have that (ν, ν̃) ∈ ρ(αctrl) and ν̃ |= ϕ.

9

3.4 Monitoring in the Presence of Expected Uncertainty and Disturbance
Up to now we considered exact ideal-world models. But real-world clocks drift, sensors measure
with some uncertainty, and actuators are subject to disturbance. This makes the exact models safe
but too conservative, which means that monitors for exact models are likely to fall back to a fail-
safe controller rather often. In this section we discuss how we find ModelPlex specifications so
that the safety property (1) and the monitor specification become more robust to expected uncer-
tainty and disturbance. That way, only unexpected deviations beyond those captured in the normal
operational uncertainty and disturbance of α∗ cause the monitor to initiate fail-safe actions.

In dL, we can, for example, use nondeterministic assignment from an interval to model sensor
uncertainty and piecewise constant actuator disturbance (e. g., as in [24]), or differential inequali-
ties for actuator disturbance (e. g., as in [35]). Such models include nondeterminism about sensed
values in the controller model and often need more complex physics models than differential equa-
tions with polynomial solutions.

Example 6. We incorporate clock drift, sensor uncertainty and actuator disturbance into the wa-
ter tank model to express expected deviation. The measured level xs is within a known sensor
uncertainty u of the real level x (i.e. xs ∈ [x− u, x+ u]). We use differential inequalities to model
clock drift and actuator disturbance. The clock, which wakes the controller, is slower than the real
time by at most a time drift of c; it can be arbitrarily fast. The water flow disturbance is at most
d, but the water tank is allowed to drain arbitrarily fast (even leaks when the pump is on). To
illustrate different modeling possibilities, we use additive clock drift and multiplicative actuator
disturbance.

0 ≤ x ≤ m ∧ ε > 0 ∧ c < 1 ∧ 0 ≤ u ∧ 0 < d

→
[(

xs := ∗; ? (x− u ≤ xs ≤ x+ u) ; f := ∗; ?
(
−1 ≤ f ≤ m−xs−u

dε (1− c)
)
;

t := 0; {x′ ≤ fd, 1− c ≤ t′ & x ≥ 0 ∧ t ≤ ε}
)∗]

(0 ≤ x ≤ m)

We analyze Example 6 in the same way as the previous examples, with the crucial exception
of the differential inequalities. We cannot use the proof rule 〈′〉 to analyze this model, because
differential inequalities do not have polynomial solutions. Instead, we use the DR and DE proof
rules of dL [28, 29] to turn differential inequalities into a differential-algebraic constraint form that
lets us proceed with the proof. Rule DE turns a differential inequality x′ ≤ θ into a quantified
differential equation ∃d̃(x′ = d̃ & d̃ ≤ θ) with an equivalent differential-algebraic constraint.
Rule DR turns a differential-algebraic constraint E into another differential-algebraic constraint
D , which implies E , written D → E , as defined in [28] (cf. App. B.1 for an example).

(DR)
D → E 〈D〉φ

〈E 〉φ
1 (DE)

∀X(∃d̃(X = d̃ ∧ d̃ ≤ θ ∧H)→ X ≤ θ ∧H)

〈∃d̃(x′ = d̃& d̃ ≤ θ ∧H)〉φ
〈x′ ≤ θ&H〉φ

2

1 differential refinement: differential-algebraic constraints D , E have the same changed variables
2 differential inequality elimination: special case of DR, which rephrases the differential inequalities≤ as differential-
algebraic constraints (accordingly for other or mixed inequalities systems).

Currently, for finding model monitors our prototype tool solves differential equations by the
proof rule 〈′〉. Thus, it finds model monitor specifications for differential algebraic equations with

10

polynomial solutions and for differential algebraic inequalities, which can be refined into solvable
differential algebraic equations as in Example 6. For prediction monitors (discussed in Section 3.5)
we use dL techniques for finding differential variants and invariants, differential cuts [28], and
differential auxiliaries [32] to handle differential equations and inequalities without polynomial
solutions.

3.5 Monitoring Compliance Guarantees for Unobservable Intermediate States
With controller monitors, non-compliance of a controller implementation w.r.t. the modeled con-
troller can be detected right away. With model monitors, non-compliance of the actual system
dynamics w.r.t. the modeled dynamics can be detected when they first occur. We switch to a fail-
safe action, which is verified using standard techniques, in both non-compliance cases. The crucial
question is: can such a method always guarantee safety? The answer is linked to the image com-
putation problem in model checking (i. e., approximation of states reachable from a current state),
which is known to be not semi-decidable by numerical evaluation at points; approximation with
uniform error is only possible if a bound is known for the continuous derivatives [33]. This im-
plies that we need additional assumptions about the deviation between the actual and the modeled
continuous dynamics to guarantee compliance for unobservable intermediate states. Unbounded
deviation from the model between sample points just is unsafe, no matter how hard a controller
tries. Hence, worst-case bounds capture how well reality is reflected in the model.

We derive a prediction monitor to check whether a current control decision will be able to
keep the system safe for time ε even if the actual continuous dynamics deviate from the model.
A prediction monitor checks the current state, because all previous states are ensured by a model
monitor and subsequent states are then safe by (1).

Definition 2 (ε-bounded plant with disturbance δ). Let αplant be a model of the form x′ = θ&H .
An ε-bounded plant with disturbance δ, written αδplant, is a plant model of the form

x0 := 0; (f(θ, δ) ≤ x′ ≤ g(θ, δ) &H ∧ x0 ≤ ε)

for some f , g with fresh variable ε > 0 and assuming x′0 = 1. We say that disturbance δ is constant
if x 6∈ δ; it is additive if f(θ, δ) = θ − δ and g(θ, δ) = θ + δ.

Theorem 3 (Prediction monitor correctness). Let α∗ be provably safe, i. e., |= φ → [α∗]ψ has
been proved using invariant ϕ as in (1). Let Vp = BV (α) ∪ FV ([α]ϕ). Let ν |= φ|const ∧ ϕ, as
checked by χm from Theorem 1. Further assume ν̃ such that (ν, ν̃) ∈ ρ(αctrl), as checked by χc

from Theorem 2. If (ν, ν̃) |= χp with χp ≡ (φ|const ∧ ϕ) → 〈αctrl〉(Υ+
Vp
∧ [αδplant]ϕ), then we have

for all (ν̃, ω) ∈ ρ(αδplant) that ω |= ϕ.

Remark 2. By adding a controller execution 〈αctrl〉 prior to the disturbed plant model, we synthe-
size prediction monitors that take the actual controller decisions into account. For safety purposes,
we could just as well use a monitor definition without controller χp ≡ (φ|const ∧ ϕ) → [αδplant]ϕ.
But doing so results in a conservative monitor, which has to keep the CPS safe without knowledge
of the actual controller decision.

11

Table 2: Monitor complexity case studies

Case Study Model Monitor Time/Mem.

dim. proof size dim. steps (open seq.) proof steps size ([s]/[MB])

(branches) w/ Opt. 1 auto (branches)

χ
m

Water tank 5 38 (4) 3 16 (2) 20 (2) 64 (5) 32 2.2 / 45.3
Cruise control [18] 11 969 (124) 7 127 (13) 597 (21) 19514 (1058) 1111 42.8 / 54.9
Speed limit [23] 9 410 (30) 6 487 (32) 5016 (126) 64311 (2294) 19850 239.1 / 49.7

χ
c

Water tank 5 38 (4) 1 12 (2) 14 (2) 40 (3) 20 1.3 / 24.6
Cruise control [18] 11 969 (124) 7 83 (13) 518 (106) 5840 (676) 84 16.4 / –i

Robot [24] 14 3350 (225) 11 94 (10) 1210 (196) 26166 (2854) 121 39.2 / –1

ETCS safety [35] 16 193 (10) 13 162 (13) 359 (37) 16770 (869) 153 14.8 / –1

χ
p Water tank 8 80 (6) 1 135 (4) N/A 307 (12) 43 16.7 / 47.7ii

http://www.cs.cmu.edu/˜smitsch/resource/modelplex_study.zip

i No memory consumption recorded ii Not automated, replaying the proof containing manual steps

3.6 Decidability and Computability
One useful characteristic of ModelPlex beyond soundness is that monitor synthesis is computable,
which yields a synthesis algorithm, and that the correctness of those synthesized monitors w.r.t.
their specification is decidable, cf. Theorem 4.

Theorem 4 (Monitor correctness is decidable and monitor synthesis computable). We assume
canonical models of the form α ≡ αctrl;αplant without nested loops, with solvable differential
equations in αplant and disturbed plants αδplant with constant additive disturbance δ (see Def. 2).
Then, monitor correctness is decidable, i. e., the formulas χm → 〈α〉Υ+

V , χc → 〈αctrl〉Υ+
V , and

χp → 〈α〉(Υ+
V ∧ [αδplant]φ) are decidable. Also, monitor synthesis is computable, i. e., the functions

synthm : 〈α〉Υ+
V 7→ χm, synthc : 〈αctrl〉Υ+

V 7→ χc, and synthp : 〈α〉(Υ+
V ∧ [αδplant]φ) 7→ χp are

computable.

4 Evaluation
We developed a software prototype, integrated into our modeling tool Sphinx [25], to automate
many of the described steps. The prototype generates χm, χc, and χp conjectures from hybrid
programs, collects open sequents, and interacts with KeYmaera [34].

To evaluate our method, we created monitors for prior case studies of non-deterministic hy-
brid models of autonomous cars, train control systems, and robots (adaptive cruise control [18],
intelligent speed adaptation [23], the European train control system [35], and ground robot colli-
sion avoidance [24]). Table 2 summarizes the evaluation. For the model, we list the dimension in
terms of the number of function symbols and state variables, and the size of the safety proof (i. e.,
number of proof steps and branches). For the monitor, we list the dimension of the monitor con-
jecture in terms of the number of variables, compare the number of steps and open sequents when

12

deriving the monitor using manual proof steps to apply Opt. 1 and fully automated w/o Opt. 1, and
the number of steps in the monitor correctness proof. Finally, we list the monitor size in terms
of arithmetic, comparison, and logical operators in the monitor formula. Although the number of
steps and open sequents differ significantly between manual interaction for Opt. 1 and fully au-
tomated synthesis, the synthesized monitors are logically equivalent. But applying Opt. 1 usually
results in structurally simpler monitors, because the conjunction over a smaller number of open
sequents (cf. Table 2) can still be simplified automatically. The model monitors for cruise control
and speed limit control are significantly larger than the other monitors, because their size already
prevents automated simplification by Mathematica. As future work, KeYmaera will be adapted to
allow user-defined tactics in order to apply Opt. 1 automatically. The last column lists duration
and memory consumption for automated monitor synthesis in KeYmaera without Opt. 1. Find-
ing ModelPlex and PredictPlex monitors is quite challenging, in comparison to finding Simplex
monitors, because of the additional plant model with mostly non-trivial differential equations. We
further simulated monitors in Mathematica. The simulation results are discussed in App. E.

5 Related Work
Runtime verification and monitoring for finite state discrete systems has received significant at-
tention (e. g., [9, 14, 21]). Other approaches monitor continuous-time signals (e. g., [10, 26]). We
focus on hybrid systems models of CPS to combine both.

Several tools for formal verification of hybrid systems are actively developed (e. g., SpaceEx [12],
dReal [13], extended NuSMV/MathSat [6]). For monitor synthesis, however, ModelPlex crucially
needs the rewriting capabilities and flexibility of (nested) [α] and 〈α〉 modalities in dL [29] and
KeYmaera [34]; it is thus an interesting question for future work if other tools could be adapted to
ModelPlex.

Runtime verification is the problem of checking whether or not a trace produced by a program
satisfies a particular formula (cf. [16]). In [40], a method for runtime verification of LTL formulas
on abstractions of concrete traces of a flight data recorder is presented. The RV system for Java pro-
grams [20] predicts execution traces from actual traces to find concurrency errors offline (e. g., race
conditions) even if the actual trace did not exhibit the error. We, instead, use prediction on the basis
of disturbed plant models for hybrid systems at runtime to ensure safety for future behavior of the
system and switch to a fail-safe fallback controller if necessary. Adaptive runtime verification [4]
uses state estimation to reduce monitoring overhead by sampling while still maintaining accuracy
with Hidden Markov Models, or more recently, particle filtering [15] to fill the sampling gaps. The
authors present interesting ideas for managing the overhead of runtime monitoring, which could
be beneficial to transfer into the hybrid systems world. The approach, however, focuses purely on
the discrete part of CPS.

The Simplex architecture [36] (and related approaches, e. g., [1, 3, 17]) is a control system
principle to switch between a highly reliable and an experimental controller at runtime. Highly
reliable control modules are assumed to be verified with some other approach. Simplex focuses
on switching when timing faults or violation of controller specification occur. Our method com-
plements Simplex in that (i) it checks whether or not the current system execution fits the entire

13

model, not just the controller; (ii) it systematically derives provably correct monitors for hybrid
systems; (iii) it uses prediction to guarantee safety for future behavior of the system.

Further approaches with interesting insights on combined verification and monitor/controller
synthesis for discrete systems include, for instance, [2, 11].

Although the related approaches based on offline verification derive monitors and switching
conditions from models, none of them validates whether or not the model is adequate for the
current execution. Thus, they are vulnerable to deviation between the real world and the model. In
summary, this paper addresses safety at runtime as follows:

• Unlike [36], who focus on timing faults and specification violations, we propose a systematic
principle to derive monitors that react to any deviation from the model.

• Unlike [4, 15, 17, 20], who focus on the discrete aspects of CPS, we use hybrid system
models with differential equations to address controller and plant.

• Unlike [17, 36], who assume that fail-safe controllers have been verified with some other
approach and do not synthesize code, we can use the same technical approach (dL) for
verifying controllers and synthesizing provably correct monitors.

• ModelPlex combines the leight-weight monitors and runtime compliance of online runtime
verification with the design time analysis of offline verification.

• ModelPlex synthesizes provably correct monitors, certified by a theorem prover

• To the best of our knowledge, our approach is the first to guarantee that verification results
about a hybrid systems model transfer to a particular execution of the system by verified
runtime validation. We detect deviation from the verified model when it first occurs and,
given bounds, can guarantee safety with fail-safe fallback. Other approaches (e. g., [3, 17,
36]) assume the system perfectly complies with the model.

6 Conclusion
ModelPlex is a principle to build and verify high-assurance controllers for safety-critical computer-
ized systems that interact physically with their environment. It guarantees that verification results
about CPS models transfer to the real system by safeguarding against deviations from the verified
model. Monitors created by ModelPlex are provably correct and check at runtime whether or not
the actual behavior of a CPS complies with the verified model and its assumptions. Upon noncom-
pliance, ModelPlex initiates fail-safe fallback strategies. In order to initiate those strategies early
enough, ModelPlex uses prediction on the basis of disturbed plant models to check safety for the
next control cycle. This way, ModelPlex ensures that verification results about a model of a CPS
transfer to the actual system behavior at runtime.

Future research directions include extending ModelPlex with advanced dL proof rules for dif-
ferential equations [31], so that differential equations without polynomial solutions, as we currently
handle for prediction monitor synthesis, can be handled for model monitor synthesis as well. An

14

interesting question for certification purposes is end-to-end verification from the model to the final
machine code.

Acknowledgments.

We thank the anonymous reviewers of the conference version [22] for their careful reading and
their helpful comments.

References
[1] Anthony M. Aiello, John F. Berryman, Jonathan R. Grohs, and John D. Schierman. Run-time

assurance for advanced flight-critical control systems. In AIAA Guidance, Nav. and Control
Conf. AIAA, 2010. doi:10.2514/6.2010-8041.

[2] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In FMCAD, pages 1–17. IEEE, 2013.

[3] Stanley Bak, Ashley Greer, and Sayan Mitra. Hybrid cyberphysical system verification with
Simplex using discrete abstractions. In Marco Caccamo, editor, IEEE Real-Time and Em-
bedded Technology and Applications Symposium, pages 143–152. IEEE Computer Society,
2010. ISBN 978-0-7695-4001-6.

[4] Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez Zadok,
and Justin Seyster. Adaptive runtime verification. In Shaz Qadeer and Serdar Tasiran, editors,
RV, volume 7687 of LNCS, pages 168–182. Springer, 2012. ISBN 978-3-642-35631-5, 978-
3-642-35632-2.

[5] Jan Olaf Blech, Yliès Falcone, and Klaus Becker. Towards certified runtime verification. In
Toshiaki Aoki and Kenji Taguchi, editors, ICFEM, volume 7635 of LNCS, pages 494–509.
Springer, 2012. ISBN 978-3-642-34280-6.

[6] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. SMT-based scenario verification for
hybrid systems. Formal Methods in System Design, 42(1):46–66, 2013.

[7] George E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput., 12(3):299–328, 1991.

[8] Matthew J. Daigle, Indranil Roychoudhury, Gautam Biswas, Xenofon D. Koutsoukos, Ann
Patterson-Hine, and Scott Poll. A comprehensive diagnosis methodology for complex hy-
brid systems: A case study on spacecraft power distribution systems. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, 40(5):917–931, 2010.

15

[9] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Runtime monitoring of
synchronous systems. In TIME, pages 166–174. IEEE Computer Society, 2005. ISBN 0-
7695-2370-6.

[10] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring for STL. In
Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 264–279.
Springer, 2013. ISBN 978-3-642-39798-1.

[11] Rüdiger Ehlers and Bernd Finkbeiner. Monitoring realizability. In Sarfraz Khurshid and
Koushik Sen, editors, RV, volume 7186 of LNCS, pages 427–441. Springer, 2011.

[12] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scal-
able verification of hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
CAV, volume 6806 of LNCS, pages 379–395. Springer, 2011. ISBN 978-3-642-22109-5.

[13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Maria Paola Bonacina, editor, CADE, volume 7898 of LNCS,
pages 208–214. Springer, 2013. ISBN 978-3-642-38573-5.

[14] Klaus Havelund and Grigore Rosu. Efficient monitoring of safety properties. STTT, 6(2):
158–173, 2004.

[15] Kenan Kalajdzic, Ezio Bartocci, Scott A. Smolka, Scott D. Stoller, and Radu Grosu. Runtime
verification with particle filtering. In Axel Legay and Saddek Bensalem, editors, RV, volume
8174 of LNCS. Springer, 2013. ISBN 978-3-642-40786-4.

[16] Martin Leucker and Christian Schallhart. A brief account of runtime verification. J. Log.
Algebr. Program., 78(5):293–303, 2009.

[17] Xue Liu, Qixin Wang, Sathish Gopalakrishnan, Wenbo He, Lui Sha, Hui Ding, and Kihwal
Lee. ORTEGA: An efficient and flexible online fault tolerance architecture for real-time
control systems. IEEE Trans. Industrial Informatics, 4(4):213–224, 2008.

[18] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In Michael Butler and Wolfram Schulte, editors, FM, volume
6664 of LNCS. Springer, 2011. doi:10.1007/978-3-642-21437-0 6.

[19] Sheila A. McIlraith, Gautam Biswas, Dan Clancy, and Vineet Gupta. Hybrid systems diag-
nosis. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC, volume 1790 of LNCS, pages
282–295. Springer, 2000. ISBN 3-540-67259-1.

[20] Patrick O’Neil Meredith and Grigore Rosu. Runtime verification with the RV system. In
Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J.
Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, RV, volume 6418 of
LNCS, pages 136–152. Springer, 2010. ISBN 978-3-642-16611-2.

16

[21] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu. An
overview of the MOP runtime verification framework. STTT, 14(3):249–289, 2012.

[22] Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified cyber-
physical system models. In Borzoo Bonakdarpour and Scott A. Smolka, editors, RV, volume
8734 of LNCS, pages 199–214. Springer, 2014.

[23] Stefan Mitsch, Sarah M. Loos, and André Platzer. Towards formal verification of freeway
traffic control. In Chenyang Lu, editor, ICCPS, pages 171–180. IEEE, 2012. ISBN 978-0-
7695-4695-7. doi:10.1109/ICCPS.2012.25.

[24] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe obstacle avoidance
for autonomous robotic ground vehicles. In Paul Newman, Dieter Fox, and David Hsu,
editors, Robotics: Science and Systems, 2013. ISBN 978-981-07-3937-9. URL http:
//www.roboticsproceedings.org/rss09/p14.pdf.

[25] Stefan Mitsch, Grant Olney Passmore, and André Platzer. Collaborative verification-driven
engineering of hybrid systems. Mathematics in Computer Science, 8(1):71–97, 2014.
doi:10.1007/s11786-014-0176-y.

[26] Dejan Nickovic and Oded Maler. AMT: A property-based monitoring tool for analog sys-
tems. In Jean-François Raskin and P. S. Thiagarajan, editors, FORMATS, LNCS, pages 304–
319. Springer, 2007. ISBN 978-3-540-75453-4.

[27] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008. ISSN 0168-7433. doi:10.1007/s10817-008-9103-8.

[28] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010. doi:10.1093/logcom/exn070. Advance Access pub-
lished on November 18, 2008.

[29] André Platzer. Logical Analysis of Hybrid Systems. Springer, 2010. ISBN 978-3-642-14508-
7. doi:10.1007/978-3-642-14509-4.

[30] André Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE, 2012. ISBN
978-1-4673-2263-8. doi:10.1109/LICS.2012.13.

[31] André Platzer. The complete proof theory of hybrid systems. In LICS. IEEE, 2012. ISBN
978-1-4673-2263-8. doi:10.1109/LICS.2012.64.

[32] André Platzer. The structure of differential invariants and differential cut elimination. Logical
Methods in Computer Science, 8(4):1–38, 2012. doi:10.2168/LMCS-8(4:16)2012.

[33] André Platzer and Edmund M. Clarke. The image computation problem in hybrid systems
model checking. In Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, editors,
HSCC, LNCS. Springer, 2007. ISBN 978-3-540-71492-7. doi:10.1007/978-3-540-71493-
4 37.

17

[34] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid sys-
tems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume
5195 of LNCS. Springer, 2008. ISBN 978-3-540-71069-1. doi:10.1007/978-3-540-71070-
7 15.

[35] André Platzer and Jan-David Quesel. European Train Control System: A case study in formal
verification. In Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume 5885 of LNCS.
Springer, 2009. doi:10.1007/978-3-642-10373-5 13.

[36] Danbing Seto, Bruce Krogh, Lui Sha, and Alongkrit Chutinan. The Simplex architecture for
safe online control system upgrades. In American Control Conference, pages 3504–3508,
1998. doi:10.1109/ACC.1998.703255.

[37] C.E. Shannon. Communication in the presence of noise. Proc. of the IRE, 37(1):10–21, 1949.
ISSN 0096-8390. doi:10.1109/JRPROC.1949.232969.

[38] Ashok N. Srivastava and Johann Schumann. Software health management: a necessity for
safety critical systems. ISSE, 9(4):219–233, 2013.

[39] D. Wang, M. Yu, C. B. Low, and S. Arogeti. Model-based Health Monitoring of Hybrid
Systems. Springer, 2013. ISBN 978-1-4614-7369-5. doi:10.1007/978-1-4614-7369-5.

[40] Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky, and Insup Lee. Runtime verification of
traces under recording uncertainty. In Sarfraz Khurshid and Koushik Sen, editors, RV, LNCS,
pages 442–456. Springer, 2011.

[41] Feng Zhao, Xenofon D. Koutsoukos, Horst W. Haussecker, James Reich, and Patrick Cheung.
Monitoring and fault diagnosis of hybrid systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 35(6):1225–1240, 2005.

18

A Proofs

A.1 Formal Semantics of dL
ModelPlex bases on a reachability relation semantics instead of trace semantics [29], since it is
easier to handle and suffices for checking at sample points.

The semantics of dL, as defined in [27], is a Kripke semantics in which states of the Kripke
model are states of the hybrid system. Let R denote the set of real numbers. A state is a
map ν : V → R; the set of all states is denoted by Sta. We write ν |= φ if formula φ is true
at state ν (Def. 4). Likewise, [[θ]]ν denotes the real value of term θ at state ν. The semantics of
HP α is captured by the state transitions that are possible by running α. For continuous evolutions,
the transition relation holds for pairs of states that can be interconnected by a continuous flow
respecting the differential equation and invariant region. That is, there is a continuous transition
along x′ = θ&H from state ν to state ω, if there is a solution of the differential equation x′ = θ
that starts in state ν and ends in ω and that always remains within the regionH during its evolution.

Definition 3 (Transition semantics of hybrid programs). The transition relation ρ specifies which
state ω is reachable from a state ν by operations of α. It is defined as follows.

1. (ν, ω) ∈ ρ(x := θ) iff [[z]]ν = [[z]]ω f.a. z 6= x and [[x]]ω = [[θ]]ν .

2. (ν, ω) ∈ ρ(x := ∗) iff [[z]]ν = [[z]]ω f.a. z 6= x.

3. (ν, ω) ∈ ρ(?φ) iff ν = ω and ν |= φ.

4. (ν, ω) ∈ ρ(x′1 = θ1, . . . , x
′
n = θn &H) iff for some r ≥ 0, there is a (flow) functionϕ:[0, r]→ Sta

with ϕ(0) = ν, ϕ(r) = ω, such that for each time ζ ∈ [0, r]: (i) The differential equation
holds, i.e.,

d [[xi]]ϕ(t)

dt (ζ) = [[θi]]ϕ(ζ) for each xi. (ii) For other variables y 6∈ {x1, . . . , xn} the
value remains constant, i.e., [[y]]ϕ(ζ) = [[y]]ϕ(0). (iii) The invariant is always respected, i.e.,
ϕ(ζ) |= H .

5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

6. ρ(α; β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for a state z}

7. ρ(α∗) =
⋃
n∈N ρ(αn) where αi+1 =̂ (α;αi) and α0 =̂ ?true.

Definition 4 (Interpretation of dL formulas). The interpretation |= of a dL formula with respect to
state ν is defined as follows.

1. ν |= θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤, <,≥, >}

2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔

3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value of x

19

4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x

5. ν |= [α]φ iff ω |= φ ∀∀ω with (ν, ω) ∈ ρ(α)

6. ν |= 〈α〉φ iff ω |= φ ∃∃ω with (ν, ω) ∈ ρ(α)

We write |= φ to denote that φ is valid, i. e., that ν |= φ ∀∀ν.

A.2 Soundness
We recall Lemma 1.

Lemma 1 (Loop prior and posterior state). Let α be a hybrid program and α∗ be the program that
repeats α arbitrarily many times. Assume that all consecutive pairs of states (νi−1, νi) ∈ ρ(α) of
n ∈ N+ executions, whose valuations are recalled with Υi

V ≡
∧
x∈V x = xi and Υi−1

V are plausible
w.r.t. the model α, i. e., |=

∧
1≤i≤n

(
Υi−1
V → 〈α〉Υi

V

)
with Υ−V = Υ0

V and Υ+
V = Υn

V . Then, the
sequence of states originates from an α∗ execution from Υ0

V to Υn
V , i. e., |= Υ−V → 〈α∗〉Υ

+
V .

Proof. Follows from the transition semantics of α∗: ρ(α∗) =
⋃
n∈N ρ(αn) where αi+1 =̂ (α;αi)

and α0 =̂ ?true.

We recall Theorem 1.

Theorem 1 (Model monitor correctness). Let α∗ be provably safe, so |= φ → [α∗]ψ. Let Vm =
BV (α) ∪ FV (ψ). Let ν0, ν1, ν2, ν3 . . . ∈ Rn be a sequence of states, with ν0 |= φ and that agree
on Σ\Vm, i. e., ν0|Σ\Vm = νk|Σ\Vm for all k. We define (ν, νi+1) |= χm as χm evaluated in the state
resulting from ν by interpreting x+ as νi+1(x) for all x ∈ Vm, i. e., ννi+1(x)

x+ |= χm. If (νi, νi+1) |= χm

for all i < n then we have νn |= ψ where

χm ≡
(
φ|const → 〈α〉Υ+

Vm

)
(3)

and φ|const denotes the conditions of φ that involve only constants that do not change in α, i. e.,
FV (φ|const) ∩BV (α) = ∅.

Proof. By induction over n. If n = 0 then (ν0, ν0) ∈ ρ(α∗) trivially by definition of ρ and |= φ→
[α∗]ψ implies ν0 |= ψ. For n > 0 assume (ν0, νn) ∈ ρ(α∗) and (νn, νn+1) |= 〈α〉

∧
x∈Vm x = x+.

Then there exists µ such that (ν
νn+1(x)

n x+ , µ) ∈ ρ(α) and the two states agree on all variables
except the ones modified by α, i. e., ν νn+1(x)

n x+ |Σ\BV (α) = µ|Σ\BV (α). Thus, µ |= Υ+
Vm

, i. e., µ |=∧
x∈Vm x = x+, which in turn yields µ(x) = µ(x+) = ν

νn+1(x)

n x+ (x+) = νn+1(x) (in other words,
µ|Vm = νn+1|Vm). Since also νn|Σ\Vm = νn+1|Σ\Vm we get µ = νn+1 and (νn, νn+1) ∈ ρ(α). Hence
(ν0, νn+1) ∈ ρ(α∗) because by induction hypothesis (ν0, νn) ∈ ρ(α∗) and we conclude νn+1 |= ψ
by assumption |= φ→ [α∗]ψ using ν0 |= φ.

We recall Theorem 2.

20

Theorem 2 (Controller monitor correctness). Let α of the canonical form αctrl;αplant. Assume
|= φ → [α∗]ψ has been proven with invariant ϕ as in (1). Let ν |= φ|const ∧ ϕ, as checked by χm

(Theorem 1). Furthermore, let ν̃ be a post-controller state. If (ν, ν̃) |= χc with χc ≡ φ|const →
〈αctrl〉Υ+

Vc
then we have that (ν, ν̃) ∈ ρ(αctrl) and ν̃ |= ϕ.

Proof. Consider a state ν |= φ|const ∧ ϕ. Assume (ν, ν̃) |= χc, i. e., ν ν̃(x)

x+ |= χc. Then there exists
µ such that (ν

ν̃(x)

x+ , µ) ∈ ρ(αctrl) and the two states agree on all variables except the ones modified
by αctrl, i. e., ν ν̃(x)

x+ |Σ\BV (αctrl) = µ|Σ\BV (αctrl). Thus, µ |= Υ+
Vc

, i. e., µ |=
∧
x∈Vc x = x+, which

in turn yields µ(x) = µ(x+) = ν
ν̃(x)

x+ (x+) = ν̃(x) (in other words, µ|Vc = ν̃|Vc). Since also
µ|Σ\Vc = ν̃|Σ\Vc we get µ = ν̃ and (ν, ν̃) ∈ ρ(αctrl). Then we have ν̃ |= ϕ because by assumption
ϕ→ [αctrl;αplant]ϕ and ρ(αplant) is reflexive as ODE can evolve for time 0.

We recall Theorem 3.

Theorem 3 (Prediction monitor correctness). Let α∗ be provably safe, i. e., |= φ → [α∗]ψ has
been proved using invariant ϕ as in (1). Let Vp = BV (α) ∪ FV ([α]ϕ). Let ν |= φ|const ∧ ϕ, as
checked by χm from Theorem 1. Further assume ν̃ such that (ν, ν̃) ∈ ρ(αctrl), as checked by χc

from Theorem 2. If (ν, ν̃) |= χp with χp ≡ (φ|const ∧ ϕ) → 〈αctrl〉(Υ+
Vp
∧ [αδplant]ϕ), then we have

for all (ν̃, ω) ∈ ρ(αδplant) that ω |= ϕ.

Proof. Consider a state ν such that ν |= φ|const ∧ ϕ. Let ν̃ be some state such that (ν, ν̃) ∈
ρ(αctrl). Then we have ν̃ |= ϕ because by assumption ϕ→ [αctrl; αplant]ϕ and ρ(αplant) is reflexive
as ODE can evolve for time 0. Furthermore ν̃ |= φ|const since ν|Σ\BV (αctrl) = ν̃|Σ\BV (αctrl) and
FV (φ|const) ∩ BV (αctrl) = ∅. Assume (ν, ν̃) |= χp, i. e., ν ν̃(x)

x+ |= χp. Then there exists µ such that
µ |= Υ+

Vp
∧ [αδplant]ϕ with (ν

ν̃(x)

x+ , µ) ∈ ρ(αctrl) and the two states agree on all variables except the

ones modified by αctrl, i. e., ν ν̃(x)

x+ |Σ\BV (αctrl) = µ|Σ\BV (αctrl). Thus, µ(x) = µ(x+) = ν
ν̃(x)

x+ (x+) =
ν̃(x). (in other words, µ|Vp = ν̃|Vp). However, from χp we know that µ |= [αδplant]ϕ. Thus, by the
coincidence lemma [29, Lemma 2.6] ν̃ |= [αδplant]ϕ since FV ([αδplant]ϕ) ⊆ Vp and hence we have
ω |= ϕ for all (ν̃, ω) ∈ ρ(αδplant).

Observe that this is also true for all intermediate times ζ ∈ [0, ω(t)] by the transition semantics
of differential equations, where ω(t) ≤ ε because αδplant is bounded by ε.

A.3 Decidability and Computability
From Lemma 1 it follows that online monitoring [16] (i. e., monitoring the last two consecutive
states) is permissible. So, ModelPlex turns questions [α∗]φ and 〈α∗〉φ into [α]φ and 〈α〉φ, respec-
tively. For decidability, we first consider canonical hybrid programs α of the form α ≡ αctrl;αplant

where αctrl and αplant are free of further nested loops.
We split Theorem 4 (decidability and computability) into Theorem 5 (decidability) and Theo-

rem 6 (computability) and prove them separately. To handle differential inequalities in dL formulas
of the form [αδplant]φ, the subsequent proofs additionally assume the rules for handling differential-
algebraic equations in the dL calculus [29].

21

Theorem 5 (Monitor correctness is decidable). Monitor correctness is decidable for canonical
models of the form α ≡ αctrl;αplant without nested loops, with solvable differential equations in
αplant and disturbed plants αδplant with constant additive disturbance δ, i. e., χm → 〈α〉Υ+

V , χc →
〈αctrl〉Υ+

V , and χp → 〈α〉(Υ+
V ∧ [αδplant]φ) are decidable.

Proof. From relative decidability of dL [31, Theorem 11] we know that sentences of dL (i. e.,
dL formulas without free variables) are decidable relative to an oracle for discrete loop invari-
ants/variants and continuous differential invariants/variants. Since neither αctrl nor αplant contain
nested loops, we manage without an oracle for loop invariants/variants. Further, since the dif-
ferential equation systems in αplant are solvable, we have an effective oracle for differential invari-
ants/variants. Let Cl∀(φ) denote the universal closure of dL formula φ (i. e., Cl∀(φ) ≡ ∀z∈FV(φ)z.φ).
Note that when |= F then also |= Cl∀(F) by a standard argument.

Model monitor χm → 〈α〉Υ+
V : Follows from relative decidability of dL [31, Theorem 11], be-

cause Cl∀(χm → 〈α〉Υ+
V) contains no free variables.

Controller monitor χc → 〈αctrl〉Υ+
V : Follows from relative decidability of dL [31, Theorem 11],

because Cl∀(χc → 〈αctrl〉Υ+
V) contains no free variables.

Prediction monitor χp → 〈αctrl〉(Υ+
V ∧ [αδplant]φ): Decidability for αctrl follows from case χc →

〈αctrl〉Υ+
V (controller monitor) above. It remains to show decidability of χp → 〈αctrl〉[αδplant]φ,

which by decidability of the controller monitor is (χp ∧ Υ+
V) → [αδplant]φ. Since the distur-

bance δ in αδplant is constant additive and the differential equations in αplant are solvable,
we have the disturbance functions f(θ, δ) and g(θ, δ) applied to the solution as an ora-
cle5 for differential invariants (i. e., the differential invariant is a pipe around the solution
without disturbance). Specifically, to show (χp ∧ Υ+

V) → [αδplant]φ by Def. 2 we have to
show (χp ∧Υ+

V)→ [x0 := 0; {θ − δ ≤ x′ ≤ θ + δ&H ∧ x0 ≤ ε}]φ. We proceed with only
(χp ∧ Υ+

V) → [x0 := 0; {x′ ≤ θ + δ&H ∧ x0 ≤ ε}]φ since the case θ − δ ≤ x′ follows
in a similar manner. By definition of αδplant we know 0 ≤ x0, and hence continue with
(χp ∧ Υ+

V) → [{x′ ≤ θ + δ&H ∧ 0 ≤ x0 ≤ ε}]φ by differential cut 0 ≤ x0. Using the
differential cut rule [29], we further supply the oracle solx + δx0, where solx denotes the so-
lution of x′ = θ in αplant and δx0 the solution for the disturbance since δ is constant additive.
This leads to two proof obligations:

Prove oracle (χp ∧Υ+
V)→ [x′ ≤ θ + δ& 0 ≤ x0 ≤ ε]x ≤ solx + δx0, which by rule differ-

ential invariant [29] is valid if we can show 0 ≤ x0 ≤ ε → x′ ≤ sol′x + (δx0)′ where
the primed variables are replaced with the respective right-hand side of the differential
equation system. From Def. 2 we know that x′0 = 1 and δ′ = 0 and since solx is the
solution of x′ = θ in αplant we further know that sol′x = θ; hence we have to show
0 ≤ x0 ≤ ε→ θ + δ ≤ θ + δ, which is trivially true.

Use oracle (χp∧Υ+
V)→ [x′ ≤ θ + δ&H ∧ 0 ≤ x0 ≤ ε ∧ x ≤ solx + δx0]φ, which by rule

differential weaken [29] is valid if we can show

(χp ∧Υ+
V)→ ∀α ((H ∧ 0 ≤ x0 ≤ ε ∧ x ≤ solx + δx0)→ φ)

5 By design, the disturbed plant αδplant also includes a clock x0, so the oracle additionally includes the trivial differ-
ential invariant x0 ≥ 0.

22

where ∀α denotes the universal closure w.r.t. x, i. e., ∀x. But, if χp is a correct monitor,
this is provable by quantifier elimination. Furthermore, we cannot get a better result
than differential weaken, because the evolution domain constraint contains the oracle’s
answer for the differential equation system, which characterizes exactly the reachable
set of the differential equation system.

We conclude that the oracle is proven correct and its usage is decidable.

For computability, we start with a theoretical proof on the basis of decidability, before we give
a constructive proof, which is more useful in practice.

Theorem 6 (Monitor synthesis is computable). Synthesis of χm, χc, and χp monitors is computable
for canonical models of the form α ≡ αctrl;αplant without nested loops, with solvable differential
equations in αplant and plants αδplant with constant additive disturbance δ, i. e., synthm : 〈α〉Υ+

V 7→
χm, synthc : 〈αctrl〉Υ+

V 7→ χc, and synthp : 〈α〉(Υ+
V ∧ [αδplant]φ) 7→ χp are computable.

Proof. Follows immediately from Theorem 5 with recursive enumeration of monitors.

We give a constructive proof of Theorem 6. The proof is based on the observation that, except
for loop and differential invariants/variants, rule application in the dL calculus is deterministic:
from [29, Theorem 2.4] we know that, relative to an oracle for first-order invariants and variants,
the dL calculus gives a semidecision-procedure for dL formulas with differential equations having
first-order definable flows.

Proof. For the sake of a contradiction, suppose that monitor synthesis stopped with some open
sequent not being a first-order quantifier-free formula. Then, by [29, Theorem 2.4] the open se-
quent either contains a hybrid program with nondeterministic repetition or a differential equation
at top level, or it is not quantifier-free. But this contradicts our assumption that both αctrl and αplant

are free from loops and that the differential equations are solvable and disturbance is constant, in
which case for

Model monitor synthesis χm: the solution rule 〈′〉 would make progress, because the differential
equations in αplant are solvable; and for

Prediction monitor synthesis χp: the disturbance functions f(θ, δ) and g(θ, δ) applied to the so-
lution provide differential invariants (see proof of Theorem 5) so that the differential cut rule,
the differential invariant rule, and the differential weakening rule [29] would make progress.

In the case of the open sequent not being quantifier-free, the quantifier elimination rule QE would
be applicable and turn the formula including quantifiers into an equivalent quantifier-free formula.
Hence, the open sequent neither contains nondeterministic repetition, nor a differential equation,
nor a quantifier. Thus we conclude that the open sequent is a first-order quantifier-free formula.

23

B Water Tank Monitor Specification Conjecture Analysis
Proof 1 shows a complete sequence of proof rules applied to the water tank specification conjecture
of Example 2 on page 7, with φ ≡ ε > 0 and Υ+ ≡ x = x+ ∧ f = f+ ∧ t = t+.

B.1 Monitoring in the Presence of Expected Uncertainty and Disturbance
Example 7. We start at the point where we have to handle the differential inequalities. First, we
eliminate the differential inequalities by rephrasing them as differential-algebraic constraints in
step (DE). Then, we refine by instantiating the existential quantifiers with the worst-case evolution
in step (DR). The resulting differential equation has polynomial solutions and, thus, we can use 〈′〉
and proceed with the proof as before.

∗
. . .

φ ` ∀X∀T (∃d̃∃t̃(X = d̃ ∧ T = t̃

∧d̃ ≤ fd ∧ 1− c ≤ t̃ ∧ 0 ≤ x
∧t ≤ ε→ X ≤ F ∧ 1− c ≤ T
∧0 ≤ d̃ ∧ t̃ ≤ ε)

∗
. . .
φ ` ∀X∀T (X = Fd ∧ T = 1− c ∧ 0 ≤ x ∧ t ≤ ε)
→ ∃d̃∃t̃(X = d̃ ∧ d̃ ≤ Fd ∧ T = t̃ ∧ 1− c ≤ T

∧0 ≤ x ∧ t ≤ ε)

φ ` . . .
φ ` . . .

(χm1)
φ ` ∃T≥0

(
(∀0≤t̃≤T (x+ dFT ≥ 0 ∧ t̃(1− c) ≤ ε))
∧F = f+ ∧ x+ dFT = x+ ∧Xs = x+

s ∧ T (1− c) = t+
)

〈′〉 φ ` 〈f :=F ;xs :=Xs; t := 0〉〈x′ = fd, t′ = 1− c & 0 ≤ x ∧ t ≤ ε〉Υ+

DR φ ` 〈f :=F ;xs :=Xs; t := 0〉〈∃d̃∃t̃(x′ = d̃, t′ = t̃ & d̃ ≤ fd ∧ 1− c ≤ t̃ ∧ 0 ≤ x ∧ t ≤ ε〉Υ+

DE φ ` 〈f :=F ;xs :=Xs; t := 0〉〈x′ ≤ fd, 1− c ≤ t′ & 0 ≤ x ∧ t ≤ ε〉Υ+

As expected, we get a more permissive monitor specification. One conjunct of the monitor
specification is shown in (χm1). Such a monitor specification says that there exists a real flow F ,
a real time T , and a real level Xs, such that the measured flow f+, the clock t+, and the measured
level x+ can be explained with the model.

C Monitor Synthesis and Fallback Controller Design

C.1 Design-By-Contract Monitoring
Preconditions, postconditions and invariants are crucial conditions in CPS design. Monitors for
these conditions can check (i) whether or not it is safe to start a particular controller (i. e., check
that the precondition of a controller is satisfied), (ii) whether or not a controller complies with its
specification (i. e., check that a controller delivers set values that satisfy its postcondition), and
(iii) whether or not the system is still within its safety bounds (i. e., check that the loop invariant of
α∗ is satisfied).

Precondition and postcondition monitors are useful to decide whether or not it is safe to invoke
a controller in the current state, and whether or not to trust a controller output. An invariant monitor

24

(∧r)
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆
(Wr)

Γ ` ∆

Γ ` φ,∆
(QE)

QE(φ)

φ
1

(〈;〉)
〈α〉〈β〉φ
〈α; β〉φ

(〈?〉)
H ∧ ψ
〈?H〉ψ

(〈:=〉)
φθx

〈x := θ〉φ
(〈∗〉)

∃X〈x :=X〉φ
〈x := ∗〉φ

2

(〈′〉)
∃t≥0

(
(∀0≤t̃≤t 〈x := y(t̃)〉H) ∧ 〈x := y(t)〉φ

)
〈x′ = θ&H〉φ

3 (∃r)
Γ ` φ(θ),∃xφ(x),∆

Γ ` ∃xφ(x),∆
4

(i∃)
Γ ` ∃X (

∧
i(Φi ` Ψi)) ,∆

Γ,Φ1 ` Ψ1,∆ · · · Γ,Φn ` Ψn,∆
5 (∃σ)

φθx
∃x (x = θ ∧ φ(x))

1 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is a quantifier-free formula
2 X is a new logical variable
3 t and t̃ are fresh logical variables and 〈x := y(t)〉 is the discrete assignment belonging to the solution y of the
differential equation with constant symbol x as symbolic initial value.
4 θ is an arbitrary term, often a new (existential) logical variable X .
5 Among all open branches, free logical variable X only occurs in the branches Γ,Φi ` Ψi,∆

φ ` −1 ≤ f+ ≤ m−x
ε
∧ x+ = x+ f+t+ ∧ t+ ≥ 0 ∧ x ≥ 0

∧ε ≥ t+ ≥ 0 ∧ f+t+ + x ≥ 0
∃σ φ ` ∃F (−1 ≤ F ≤ m−x

ε
∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0

∧x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0)

i∃ φ ` −1 ≤ F ≤ m−x
ε

φ ` F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0
∧ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0

QE φ ` ∀0≤t̃≤t+ (x+ F t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f+

∧x+ = x+ Ft+ ∧ t+ = t+
∃r,Wr φ ` ∃T≥0

(
(∀0≤t̃≤T (x+ F t̃ ≥ 0 ∧ t̃ ≤ ε))

∧(F = f+ ∧ x+ = x+ FT ∧ t+ = T)
)

〈′〉 φ ` 〈f :=F ; t := 0〉〈x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε〉Υ+

〈;〉,〈:=〉φ ` 〈f :=F 〉〈t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)〉Υ+

φ ` 〈f :=F 〉〈plant〉Υ+

∧r φ ` 〈f :=F 〉 − 1 ≤ f ≤ m−x
ε
∧ 〈plant〉Υ+

〈?〉 φ ` 〈f :=F 〉〈?− 1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

∃r,Wr φ ` ∃F 〈f :=F 〉〈?− 1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

〈∗〉 φ ` 〈f := ∗; ?− 1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

〈;〉 φ ` 〈f := ∗; ?− 1 ≤ f ≤ m−x
ε

; plant〉Υ+

Proof 1: Analysis of the water tank monitor specification conjecture (plant is an abbreviation for
x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)

of a CPS α∗ captures the main assumptions that have to be true throughout system execution. When
an invariant monitor is unsatisfied, it may no longer be safe to run the CPS; a fail-safe controller

25

can act as a mitigation strategy.
Design-by-contract monitors are useful to monitor specific design decisions, which are explic-

itly marked in the model. Our approach systematically creates monitors for a complete specifica-
tion of the behavior of the model.

C.2 Monitor Synthesis
Once we found a model monitor, controller monitor, or prediction monitor specification, we want
to turn it into an actual monitor implementation (e. g., in C). The main challenge is to reliably
transfer the monitor specification, which is evaluated on R, into executable code that uses floating
point representations. We use the interval arithmetic library Apron to represent each real arithmetic
value with an interval of a pair of floating point numbers. The interval reliably contains the real.

For certification purposes one still has to argue for the correctness of the actual machine code
of the synthesized monitor. This entails that the transformation from the monitor specification as
a first-order formula into actual code that evaluates the formula must be formally verified. If the
synthesized code is still a high-level language, a certified compiler, e. g., CompCert6, can be used
to produce machine code. Such a comprehensive proof chain suitable for certification is part of
our ongoing research.

C.3 Designing for a Fail-Safe Fallback Controller
When we design a system for a fail-safe fallback controller ctrlsafe, it is important to know within
which bounds the fail-safe controller can still keep our CPS safe, and which design limits we want
a controller implementation to obey. The invariant of a CPS with the fail-safe fallback controller
describes the safety bounds. When we start the fail-safe fallback controller ctrlsafe in a state where
its invariant G is satisfied, it will guarantee to keep the CPS in a state that satisfies the safety
property ψ.

So, to safely operate an experimental controller ctrlexp, we want a monitor that informs us when
the experimental controller can no longer guarantee the invariant of the fail-safe controller or when
it is about to violate the design limits.

A design for a CPS with a fail-safe fallback controller, therefore, involves proving two proper-
ties. First, we prove that the fail-safe controller ctrlsafe ensures the safety property ψ as in formula
(4) below. This property is only provable if we discover an invariant G for the CPS with the
fail-safe controller. Then we use G as the safety condition for generating a prediction monitor.

φ→ [(ctrlsafe; plant)∗@inv(G)]ψ (4)

With this generic structure in mind, we can design for a fallback controller invoked by a model
monitor χm, controller monitor χc, or prediction monitor χp. Upon violation of either χm, χc, or
χp by the actual system execution, the set values of a fail-safe controller are used instead.

6 http://compcert.inria.fr/

26

D Monitor Synthesis Algorithm
Algorithm 1 lists the ModelPlex specification conjecture analysis algorithm, which turns a spec-
ification conjecture into an actual monitor. The algorithm takes a hybrid system model α, a set
of variables V that we want to monitor7, and an initial condition φ including constraints on the
variables not changed in α.

Algorithm 1: ModelPlex monitor synthesis
input : A hybrid program α, a set of variables V ⊆ BV (α), an initial condition φ such that

|= φ→ [α∗]ψ.
output: A monitor χm such that |= χm ≡ φ|const → 〈α〉Υ+.
begin

S ←− ∅
Υ+ ←−

∧
x∈V x = x+ with fresh variables x+

i // Monitor conjecture
G←− {` φ|const → 〈α〉Υ+}

1 while G 6= ∅ do // Analyze monitor conjecture
foreach g ∈ G do

G←− G− {g}
if g is first-order then

if 6|= g then S ←− S ∪ {g}
else

g̃ ←− apply dL proof rule to g
G←− G ∪ {g̃}

χm ←−
∧
s∈S s // Collect open sequents

E Simulation
To illustrate the behavior of the water tank model with a fallback controller,we created two mon-
itors: Monitor χm validates the complete model (as in the examples throughout this paper) and is
executed at the beginning of each control cycle (before the controller runs). Monitor χc validates
only the controller of the model α (compares prior and post state of f := ∗; ?−1 ≤ f ≤ m−x

ε
) and

is executed after the controller but before control actions are issued. Thus, monitor χc resembles
conventional runtime verification approaches, which do not check CPS behavior for compliance
with the complete hybrid model. This way, we detect unexpected deviations from the model at the
beginning of each control cycle, while we detect unsafe control actions immediately before they
are taken. With only monitor χm in place we would require an additional control cycle to detect
unsafe control actions8, whereas with only monitor χc in place we would miss deviations from the
7 Usually, we want a monitor for all the bound variables of the hybrid system model, i. e., V = BV (α). 8 We could
run monitor χm in place of χc to achieve the same effect. But monitor χm implements a more complicated formula,
which is unnecessary when only the controller output should be validated.

27

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

1

disturbed
dynamics
x′ = f + 1

20

water level x
if monitor would not
reject unsafe action

safety level
monitor χc

safety level
monitor χm

Maximum level m = 1

t = 4: unsafe control action detected
by monitor χc, fail-safe action taken

t = 12: Reduced commanded flow,
but unexpected disturbance occurs

t = 14: disturbance detected by
monitor χm, fail-safe action taken

t

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

1

disturbed
dynamics
x′ = f + 1

20

water level x
if monitor would not
reject unsafe action

safety level
monitor χc

safety level
monitor χm

Maximum level m = 1

t = 4: unsafe control action detected
by monitor χc, fail-safe action taken

t = 12: Reduced commanded flow,
but unexpected disturbance occurs

t = 14: disturbance detected by
monitor χm, fail-safe action taken

t

Figure 2: Water tank simulation with monitor illustration, is maximum level (m), is current
level (x), is commanded flow (f), is the output of monitor χm for the complete model, and

is the output of monitor χc for the controller

model.
Fig. 2 shows a plot of the variable traces of one simulation run. In the simulation, we ran

the pump controller every 2 s (ε = 2 s, indicated by the grid for the abscissa and the marks on
sensor and actuator plots). The controller was set to pump with 5(m−x0)

2ε
= 5

2
for the first three

controller cycles, which is unsafe on the third controller cycle. MonitorB immediately detects this
violation at t = 4, because on the third controller cycle setting f = 5

2
violates f ≤ m−x1

ε
. The

fail-safe action at t = 4 drains the tank and, after that, normal operation continues until t = 12.
Unexpected disturbance x′ = f + 1

20
occurs throughout t = [12, 14], which is detected by monitor

χm. Note, that such a deviation would remain undetected with conventional approaches (monitor
χc is completely unaware of the deviation). In this simulation run, the disturbance is small enough
to let the fail-safe action at t = 14 keep the water tank in a safe state.

28

	Introduction
	Preliminaries: Differential Dynamic Logic
	ModelPlex Approach for Verified Runtime Validation
	Relation between States
	ModelPlex Monitor Synthesis
	Controller Monitor Synthesis
	Monitoring in the Presence of Expected Uncertainty and Disturbance
	Monitoring Compliance Guarantees for Unobservable Intermediate States
	Decidability and Computability

	Evaluation
	Related Work
	Conclusion
	Proofs
	Formal Semantics of
	Soundness
	Decidability and Computability

	Water Tank Monitor Specification Conjecture Analysis
	Monitoring in the Presence of Expected Uncertainty and Disturbance

	Monitor Synthesis and Fallback Controller Design
	Design-By-Contract Monitoring
	Monitor Synthesis
	Designing for a Fail-Safe Fallback Controller

	Monitor Synthesis Algorithm
	Simulation

